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Crystal growth models and Ising models 11. Constraints on 
high-field expansions 

I G Enting 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT, 2600, Australia 

Received 18 November 1976 

Abstract. High-field expansions for the Ising model on a honeycomb lattice have been given 
in terms of mixed one-spin/two-spin/three-spin Ising models on the triangular lattice. It is 
pointed out that a two-parameter subset of these mixed models has been solved and that the 
series expansions are thus subject to a large number of constraints. 

1. Introduction 

High-field expansions for Ising models have been very important in the study of critical 
phenomena. One of the reasons for this is that these series are appropriate for studying 
the approach to the critical point along the zero-field line from low temperatures and 
also along the critical isotherm. They can also be transformed to give high-temperature 
expansions. 

One of the most significant advances in techniques of deriving such series expan- 
sions was the method of partial generating functions (Sykes et a1 1965, to be referred to 
as I). One of the simplest applications of this method is the honeycomb lattice Ising 
model which can be transformed by a star-triangle transformation into a triangular 
lattice Ising model with a field, H, a nearest-neighbour interaction, J, and a three-spin 
interaction, J3,  on half the triangles. These techniques have been developed in a series 
of papers (Sykes et a1 1973a, b, c, 1975a, b, c, to be referred to as 11,111, IV, VII, VI11 
and IX) and extensive tables of series coefficients for this mixed model have been given 
(I, 111, IX). The most recent refinement of these techniques used a number of 
consistency requirements on the series as constraints to reduce the amount of com- 
binatorial information needed. 

Some months after the publication of IX a solution for the magnetization and 
nearest-neighbour correlation of a subset of the one-spin/two-spin/three-spin triangu- 
lar model was given by Welberry and Galbraith (1975). The solutions applied to the 
surface in H-J-J, space sketched in figure 1. (Actually Welberry and Galbraith solved 
a model with an additional free parameter corresponding to a lattice anisotropy-we 
shall consider only the isotropic case). The solutions of these crystal growth models 
resulted from work by statisticians and theoretical chemists (Bartlett 1967, 1968, 
Welberry and Galbraith 1973). The work is not expressed in Ising model terminology 
and in fact makes no mention of the king model. The independent development of 
these growth model solutions simultaneously with extensive series work on the corres- 
ponding Ising models is a remarkable coincidence. 

1023 



1024 I G Enting 

P 

1 . o  

0 9  
1 0  

- - - - - -  
l o  

. 
1 0  

W 

Figure 1. The surface in the space of p =exp(-2H/kT), U =exp(-2J/kT), w = 
exp(-2J3/kT) on which the mixed triangular lattice model corresponds to a crystal growth 
model and can be solved. Contours of fixed U are shown at intervals Au = 0.1 with auxiliary 
contours sketched at Au = 0.05. As viewed from the direction of the U axis the surface 
showsasaddle at (p,u,  w ) = ( l ,  1, 1). 

The correspondence between crystal growth models and Ising models has been 
described by Enting (1977). Enting considered an eight-parameter subset of a class of 
ten-parameter square lattice Ising models, including the mixed triangular lattice model 
as a special case. The derivation for the special case is given in Q 2 with a slight change of 
emphasis from the original derivation and a considerable simplification in the detailed 
mathematics. Section 3 gives an alternative derivation of the exact solutions and 
expresses these in Ising model terms. Section 4 shows how these solutions can be 
compared with the published Ising model series data. Section 5 concludes the paper 
with a discussion of the problems involved in using these constraints in the derivation of 
series expansions. 

2. Crystal growth models and Ising models 

This section repeats the discussion given by Enting (1977) and gives detailed transfor- 
mations for the triangular lattice one-spin/two-spin/three-spin model. The original 
paper of Enting gives a more general transfdrmation, discusses boundary conditions 
and investigates other special cases with particular emphasis on disorder-point 
phenomena. 

Both the crystal growth models and the Ising models can be regarded as models of 
random systems with spatial interactions. Since each model was introduced in connec- 
tion with problems in solids, the spatial framework used is generally a regular crystal 
lattice. In each model the variation has been simplified so that each site r of the lattice 
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has a two-state variable ur = kl. The states represent occupation by one of the two 
types of molecule when modelling the growth of disordered mixed crystals or of one of 
two types of atom in the Ising model description of binary alloys. Other interpretations 
of the Ising model variables are as presence or absence of a gas molecule (lattice gas) or 
as the value of the z component of a spin $ (magnetic models). 

To make the connection between crystal growth models and king models we 
consider the overall configuration represented by U, a vector of 0; variables. This has a 
probability which is denoted P(u). In the statistical mechanics of the Ising model one 
has 

P(u) = exp(-E(a)/kT)/Q. (1) 
We consider the energy defined on a square lattice of sites (i, j )  by 

The J and J’ interactions define a triangular lattice with three-spin interactions J3 on all 
triangles of one parity. The crystal growth model is defined by 

P.. V = ; + ( T - [ c y  11 -++ p (Xi-1,j  +xuJ + 6Xi,j-1Xi-IJ].  

x i j = $ ( q j + + ) = O  or 1.  (5 )  

(4) 

Equation (4) corresponds to equation (1) of Welberry and Galbraith (1975) with p = y. 
The occupation variables are 

The a, p, 6 parameters are transformed to variables X,  Y, 2 as indicated in table 1.  In 
crystal growth models the factors Pij are interpreted as conditional probabilities of a site 
(i, j )  having state gij given the state of neighbours (i - 1, j )  and (i, j - 1). 

Table 1. The conditional probabilities Pij for various spin configurations, expressed in two 
different parametrizations before the imposition of constraints @a),  (86). 

Spin configuration Probability P(ui j~ui - lJ~i , , - l )  =Pi ,  

Welberry and 
6, i )  ( i - 1 , j )  ( i , j - i j  Galbraith Present paper 

1 1 1 ff +2p + 6  X 
-1 1 1 1 - f f - 2 p - 6  1 -x 
-1 -1  -1 1 -ff  z 

1 -1 -1 ff 1-2  
-1  1 -1 1 - a - p  Y 
-1 -1 1 1-ff  - p  Y 

1 1 -1 f f + P  1 - Y  
1 -1 1 ff + P  1 - Y  

Enting has shown that (3), (4) is equivalent to (l), (2). Given the existence of an 
equivalence the transformation can be defined in terms of 

( 6 ~ )  I.L = exp( - 2H/kT) 
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U = exp(-2J/kT) (6b 1 
U = exp(-2J’/kT) 

w = exp(-2J3/kT) 

by evaluating P ( a )  for simple configurations of - sites surrounded by a sea of + sites. 
Dividing each expression by the probability of all sites being + removes the need to 
evaluate 0 in (1). 

For one - site: 

p u 4 u 2 w 3 = ( 1 - X ) ( 1 -  Y)’/X’. (7a 1 
For (i, j ) ,  (i - 1, j )  - : 

p2u6u4w4 = (1 - X ) Y ( l -  Y)”X’. 

p2U8U2w4 = (1 - X ) ~ ( I  - Y ) ~ ( I  - 2 ) / x 5 .  

CL U ( 1 - ~ ) ~ ( 1 -  Y)~z/x~. 

For ( i - 1 , j )  and ( i , j - 1 ) - :  

For (i - 1, j ) ,  (i, j - 1) and (i, j )  - : 
3 8 4 7 =  ( 7 4  

To impose triangular lattice symmetry we require J = J’, i.e. U = U, or from (76) ,  (7c)  

(1 -X)( 1 -2) = Y( 1 - Y) ( s a )  
or in terms of the Welberry and Galbraith variables 

-ffS = p  - p 2 .  
Equation (86) is equivalent to the P = y case of equation (6)  of Welberry and Galbraith 
(1975) defining their special case 1 (SC1). Thus for /3 = y imposing the SC1 constraint is 
equivalent to imposing triangular lattice symmetry on the corresponding triangular 
lattice Ising model. Equations (7u), (7b) ,  (7d) ,  ( s a )  define a surface in p-U-w space, 
on which the multispin Ising model (2) is equivalent to a crystal growth model. This 
surface is sketched in figure 1. 

3. Solutions for crystal growth models 

The derivation of solutions starts from equation (4): 

Pij = 5 + ( 2 x ,  - l)[a-t+P(xi-l,j +xi , j - l )+Sxi- l , jx i , j -11.  

Now 
(4) 



Crystal growth models and Zsing models ZI 1027 

The product II(,,,,) is over all sites in the system; the sum E(') and the product I-I'l) 
include all sites (m, n) such that m C i ;  n C j ,  the sum being over all configurations of x,, 
on these sites. The sum 2") and product II") exclude ( i ,  j ) .  Equation (96) follows from 
(sa) because the terms removed are factors which are sums of probabilities, i.e. 1.  
Equation ( 9 4  follows from (9c) since the case xij  = 0 contributes zero to E(1). Equation 
(9d) is a sum of terms having the same structure as equation (96) (with a shift of origin 
and inclusion of some additional P,,, that give factors of 1) and so (9d) is itself a sum of 
expectations as indicated in (se). 

Similarly, using x i , ,  = xmn, 

We now wish to compare stationary solutions of triangular symmetry for growth models 
and the multispin Ising model of equation (2). This comparison can be made in a naive 
manner without considering what type of limiting process is actually needed to achieve a 
stationary distribution. For a stationary distribution 

For triangular lattice symmetry we require 

so that 

Eliminating 4,s from (86), (13a), (136) gives 

e = LY/(i - p )  
4 = e 2  

as found by Welberry and Galbraith (1975). 
It should be noted that equations (9e) and (10) can only be solved in this manner if 

we impose triangular lattice symmetric by use of constraint (86). The technique used by 
Welberry and Galbraith (1975) also required the use of constraint (86) for reasons that 
appear to be connected with the property 4 = 8' leading to distributions on one 
diagonal being characterized only by 8, rather than using any symmetry. 

Simulations performed by Welberry and Galbraith indicate that all two-site correla- 
tions 'decouple' to be equal to 8'. This conjecture is confirmed by the series expressions 
for susceptibility considered in the following section which indicate 

since the only contribution comes from (i, j )  = (0,O). 



1028 I G Enting 

4. Constraints on Ising model series 

Sykes and co-workers have given coefficients in the series expansions for the isotropic 
(J' = J )  case of model (2). The reduced free energy has the form 

The coefficients are actually quoted in the context of the alternative interpretation on 
the honeycomb lattice: 

-kTln AH = -kT 2 aWrpp(6p  - q  -2r ,  6 p  -2q  -3p,  p ,  q )  (18) 

where the expressions (a, b, c, d )  denote coded partial generating functions of the form 
f;"fifjfi.  The sum of terms with a common p value is denoted Fp. 

The actual coefficients are given in I, I11 and IX. We have also calculated a13,2,8 = 3 ,  
ai3,i .a = 6 ,  ai4,1,9 = 3 and ai5,o,io = 1.  

To compare series expansions with the exact solutions we need an appropriate pair 
of expansion variables x, y. One such pair is defined by 

W' 

x = l - x  ( 1 9 ~ )  

y = Y/x (19b) 

1 - 2 = y (1 - xy ). (19c) 

so that constraint (8a )  leads to 

The expansion variables then become 

g =x(1-xy)2/(1-x)3 

ii = y ( 1  -x) / ( l  -xy) 

w/.i = ( 1 - y + xy 2 ) / (  1 - x ). 

The expressions that can be compared are 

= 1-M2 (conjected on the basis of simulation). 
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The four coefficients given above together with 74 other coefficients from I, 111, IX are 
sufficient to give M, 7, ,y correct to order x 5  for all powers of y, when expressions 
( 2 0 4  6,  c) are substituted into the series expansions in (21), (22), (23). The agreement 
gives a consistency check on the derivation of the king model coefficients and the 
growth model solutions. To order x 5  the conjecture that ,y = 1 - M 2  is confirmed. It is 
possible to replace x, y by other variables that lead to alternative groupings of the a,, 
coefficients. 

When the exact solutions are expanded in powers of x and y, non-zero coefficients 
occur only when the exponent of y is less than or equal to the power of x so that up to 
order xn there are $(n + l ) ( n  +2) coefficients that are generally non-zero. In addition to 
these i ( n  + l ) ( n  +2)  constraints arising from each of the three exact solutions, the zero 
coefficients also represent constraints on the series since individual terms aW,fiPz2qGr 
can have non-zero contributions to x ” y m  with m >n (for example u ~ , , , ~ , ~ ) .  

5. Conclusions 

In the work of Welberry and Galbraith (1975), the special growth model (SC1) studied 
above was of comparatively little interest because all the two-site correlations 
‘decoupled’ and so these models could not give any behaviour indicative of ordering in 
diffraction simulation studies. The SC1 model is however of considerable interest in 
connection with king model series since the constraints demonstrated above suggest 
several questions. 

Firstly, is it possible to use such constraints in conjunction with the techniques of 
Sykes eta1 VII, VIII, IX? For this to be possible, the growth model constraints must be 
at least partly independent of the constraints used in IX. This question of independence 
cannot be easily answered. 

Secondly, there is the possibility of these solutions leading to entirely new techni- 
ques of series derivation. Generally series expansions represent a perturbation about a 
special point such as T = 0 or T = CO. The ability to calculate correlations means that in 
principle we can calculate perturbation expansions about all points on the surface 
shown in figure 1.  

The occurrence of constraint ( 8 b )  as being necessary for the derivation of solutions 
by two rather different techniques remains puzzling since in one case the constraint 
represents a symmetry requirement while in the other case it appears to be the condition 
for decoupling described by (14b). As discussed by Enting (1977) the use of symmetry 
properties arises from the Ising model interpretation of the crystal growth models since 
the growth models themselves are formulated in terms that disguise lattice symmetries. 
Application of the king model viewpoint in the derivation of symmetries has led to 
solutions for growth models that had not been solved by other methods (T R Welberry, 
private communication). 
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